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An Experimental Design Perspective on GeneticAlgorithms �Colin Reeves and Christine WrightStatistics and Operational Research DivisionSchool of Mathematical and Information SciencesCoventry UniversityUKEmail: CRReeves@coventry.ac.ukAbstractIn this paper we examine the relationship between genetic algorithms (GAs) andtraditional methods of experimental design. This was motivated by an investigationinto the problem caused by epistasis in the implementation and application ofGAs to optimization problems: one which has long been acknowledged to havean important inuence on GA performance. Davidor [1, 2] has attempted aninvestigation of the important question of determining the degree of epistasis of agiven problem. In this paper, we shall �rst summarise his methodology, and thenprovide a critique from the perspective of experimental design. We proceed toshow how this viewpoint enables us to gain further insights into the determinationof epistatic e�ects, and into the value of di�erent forms of encoding a problem fora GA solution. We also demonstrate the equivalence of this approach to the Walshtransform analysis popularized by Goldberg [3, 4], and its extension to the idea ofpartition coe�cients [5]. We then show how the experimental design perspectivehelps to throw further light on the nature of deception.1 INTRODUCTIONThe term epistasis is used in the �eld of genetic algorithms to denote the e�ect on chromo-some �tness of a combination of alleles which is not merely a linear function of the e�ectsof the individual alleles. It can be thought of as expressing a degree of non-linearity in the�Published in D.Whitley and M.Vose (Eds.) (1995) Foundations of Genetic Algorithms 3, Mor-gan Kaufmann, San Mateo, CA.
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Table 1: Goldberg's 3-bit deceptive functionString Fitness0 0 0 70 0 1 50 1 0 50 1 1 01 0 0 31 0 1 01 1 0 01 1 1 8�tness function, and roughly speaking, the more epistatic the problem is, the harder it maybe for a GA to �nd its optimum.Several authors [3, 4, 6, 8] have explored the problem of epistasis in terms of the propertiesof a particular class of epistatic problems, those known as deceptive problems|the mostfamous example of which is probably Goldberg's 3-bit function, which has the form shownin Table 1 (de�nitions of this function in the literature may di�er in unimportant details).The study of such functions has been fruitful, but in terms of solving a given practicalproblem ab initio, it may not provide too much help. What might be more importantwould be the ability to estimate the degree of epistasis in a given problem before decidingon the most suitable strategy for solving it. At one end of the spectrum, a problem withvery little epistasis should perhaps not be solved by a GA at all; for such problems oneshould be able to �nd a suitable linear or quasi-linear numerical method with which a GAcould not compete. At the other end, a highly epistatic problem is unlikely to be solvableby any systematic method, including a GA. Problems with intermediate epistasis wouldbe worth attempting with a GA, although even here it would also be useful if one couldidentify particular varieties of epistasis. If one could detect problems of a deceptive nature,for instance, one might suggest using an approach such as the `messy GA' of [9, 10].There is another aspect to this too: it is well-known (see e.g. [7, 11]) that the coding usedfor a GA may be of critical importance in how easy it is to solve. In fact (as we shallalso demonstrate later) a particular choice of coding may render a simple linear functionepistatic. Conversely, by choosing a di�erent coding, it may be possible to reduce the degreeof epistasis in a problem. It would clearly be valuable to be able to compare the epistasisexisting in di�erent codings of the same problem.In recent papers, Davidor [1, 2] has reported an initial attempt at estimating the degreeof epistasis in some simple problems. His results are to some degree perplexing, and itis di�cult to draw �rm conclusions from them. In this paper, we hope to show that hismethodology can be put on a �rmer footing by drawing on existing work in the �eld ofexperimental design (ED), which can be used to give insights into epistatic e�ects, and intothe value of di�erent codings. Later we shall also show how this approach relates to theWalsh transform methodology and the analysis of deception.We begin by summarising Davidor's approach to the analysis of epistasis.
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2 DAVIDOR'S EPISTASIS METHODOLOGYDavidor deals with populations of binary strings fSg of length l, for which he de�nes severalquantities, as summarised below:The basic idea of his analysis is that for a given population Pop of size N , the average �tnessvalue can be determined as �V = XS2Pop v(S)=Nwhere v(S) is the �tness of string S. Subtracting this value from the �tness of a given stringS produces the excess string �tness valueE(S) = v(S) � �V :We may count the number of occurrences of allele a for each gene i, denoted by Ni(a), andcompute the average allele value Ai(a) =X v(S)=Ni(a);where the sum is over the strings whose ith gene takes the value a. The excess allele valuemeasures the e�ect of having allele a at gene i, and is given byEi(a) = Ai(a)� �V :The genic value of string S is the value obtained by summing the excess allele values at eachgene, and adding �V to the result: A(S) = �V + lXi=1 Ei(a):(Davidor actually gives the sum in the above formula the name `excess genic value', i.e.E(A) = lXi=1 Ei(a);although this quantity is not necessary in the ED context; we include the de�nition herefor completeness.) Finally, the epistasis value is the di�erence between the actual value ofstring S and the genic value predicted by the above analysis:�(S) = v(S) � A(S):Thus far, what Davidor has done appears reasonably straightforward. He then de�nesfurther `variance' measures, which he proposes to use as a way of quantifying the epistasis ofa given problem. Several examples are given using some 3-bit problems, which demonstratethat using all 8 possible strings, his epistasis variance measure behaves in the expectedfashion: it is zero for a linear problem, and increases in line with (qualitatively) moreepistatic problems. However, when only a subset of the 8 possible strings is used, theepistasis measure gives rather problematic results, as evidenced by variances which are veryhard to interpret.In a real problem, of course, a sample of the 2l possible strings is all we have, and anepistasis measure needs to be capable of operating in such circumstances. Below we re-formulate Davidor's analysis from an ED perspective, which we hope will shed rather morelight on this problem.
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3 AN EXPERIMENTAL DESIGN APPROACHDavidor's analysis is complicated by the GA convention of describing a subset of strings asa population, when from a traditional statistical perspective it is actually a sample. Davidoruses the terms Grand Population and sample population to try to avoid this confusion. Wepropose instead to use the term Universe for the set of all possible 2l strings, so that wecan use the term population in the sense with which the GA community is familiar.It is clear that Davidor is implicitly assuming an underlying linear model (de�ned on thebits) for the �tness of each string. This leads to a further problem in his analysis, linked tothe above confusion between population and sample, in that he fails to distinguish betweenthe parameters of this underlying model, and the estimates of those parameters which arepossible for a given population. We can begin to explain this more clearly by �rst makingthe model explicit.We can express the full epistatic model asv(S) = constant + lXi=1(e�ect of allele at gene i)+ l�1Xi=1 lXj=i+1(interaction between alleles at gene i and gene j)+ . . .+(interaction between alleles at gene 1, gene 2, . . . , gene l)+random errorIn conventional experimental design, the above model would actually be written in para-metric form. For example, the model for a string of 3 binary bits could be written asfollows: vpqrs = � + �p + �q + (��)pq + r + (�)pr + (�)qr + (��)pqr + "pqrs (1)where vpqrs is the �tness of the string (p; q; r), and the subscript s denotes the replicationnumber (i.e. the sth occurrence of the string). If there is no intrinsic noise, we can of coursedrop the subscript s. The parameters on the right-hand side are as follows:� average �tness�p e�ect of allele p at gene 1�q e�ect of allele q at gene 2(��)pq joint e�ect of allele p at gene 1 and allele q at gene 2r e�ect of allele r at gene 3(�)pr joint e�ect of allele p at gene 1 and allele r at gene 3(�)qr joint e�ect of allele q at gene 2 and allele r at gene 3(��)pqr joint e�ect of allele p at gene 1, allele q at gene 2 and allele r at gene 3"pqrs random error for replication s of string (p; q; r)Davidor assumes zero random error, which is reasonable in many, although not all, appli-cations of GAs. We thus intend to ignore the possibility of random error here, although wehope to consider such problems at a later date.We emphasize again that we must distingush two di�erent situations, even when we assumezero random error. In the �rst case we know the �tness of every string in the Universe. In
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practice this is unrealistic|in reality we only know the �tness of every string in a subsetof the Universe (i.e. our `population', to use the conventional GA terminology, is merelya sample). Of course, in the �rst case, there is in one sense no problem: the optimalcombination is obvious, and all the measures proposed by Davidor are constants. In thesecond case (which is the real situation) the various epistasis measures are only estimates ofparameters, whose expectations and variances are important characteristics. Nevertheless,for purposes of exposition, we need to focus initially on the �rst case, and we shall postponeexamination of the real situation to another paper.3.1 An exampleSuppose we have a 3-bit string, and the �tness of every string in the Universe is known.There are of course 23 = 8 strings , and therefore 8 �tness values, but the experimentaldesign model above has 27 parameters. It is thus essential to impose some side conditionsif these parameters are to be estimated; the usual ones are the obvious constraints that atevery order of interaction, the parameters sum to zero for each subscript. This results in anadditional 19 independent relationships such asXp �p = 0Xp (��)pq = 0 for q = 0; 1Xp (��)pqr = 0 for q; r = 0; 1and thus allows the `solution' of the above model, in the sense that all the parameter valuescan be determined if we have observed every one of the 8 possible strings|the �rst caseabove. For example, we �nd that � = v����+ �p = vp�� for p = 0; 1� + �q = v�q� for q = 0; 1� + r = v��r for r = 0; 1where the notation vp��, for instance, means averaging over subscripts q and r. The e�ectscan be seen to be exactly equivalent to Davidor's `excess allele values' as de�ned above. Forinstance, his A1(p) = vp��, so that E1(p) = �p. Similarly, his `excess genic values' E(A) arefound by summing �p, �q and r for each possible combination of p; q; r. Finally, his `stringgenic value' is clearly �+ �p + �q + r :The di�erence between the actual value and the genic value, �(S), is therefore simply thesum of all the interaction terms. If there is no epistasis, then by de�nition the combinationsof alleles p; q; r will have no e�ect on chromosome �tness other than this simple linear sum,so that epistasis can be interpreted as the combined e�ect of the interaction terms.3.2 Analysis of VarianceThe normal procedure in experimental design is to perform an `Analysis of Variance'(Anova), whereby the variability of the �tness values (measured by sums of squared de-viations from mean �tness, and denoted by SS) is partitioned into orthogonal components
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from identi�able sources. In the table below, we give a conventional Anova table for our3-bit example, with Davidor's notation alongside:Table 2: Analysis of Variance TableSource of Degrees of Sum of Davidor'svariation freedom squares (SS) notationBetween alleles 1 Ppqr(vp�� � v���)2 P[E1(a)]2of gene 1Between alleles 1 Ppqr(v�q� � v���)2 P[E2(a)]2of gene 2Between alleles 1 Ppqr(v��r � v���)2 P[E3(a)]2of gene 3Total main e�ects 3 sum of above sum of above(i.e.`genic' e�ect)Interactions 4 Ppqr(vpqr � vp�� � v�q� � v��r + 2v���)2 P[�(S)]2(i.e.epistatic e�ect)Total 7 P(vpqr � v���)2 P[E(S)]2The degrees of freedom are the number of independent elements in the associated SS; forexample, in the Total SS term, only 7 of the (vpqr � v���) terms are independent, since theymust satisfy the relationshipPpqr(vpqr � v���) = 0.It is well-known (and easy to prove) thatTotal SS = Main e�ects SS + Interactions SSand since Davidor has simply divided these values by a constant to obtain his `variances',it is hardly surprising that he �nds thatTotal `variance' = Genic `variance' + Epistasis `variance':(We note here that when we come to investigate the real situation, we shall see that thisresult appears no longer to be true using Davidor's de�nitions; the reason for this will bediscussed in the second paper.)Any standard statistical computing package will produce these Anova tables; below we givesome examples obtained using MINITAB on Davidor's functions f1; f2; f3 and f4. Thesefunctions represent respectively a linear function, a delta function, a mixture of f1 and f2,and �nally the deceptive function of Table 1.We see from these results that in a qualitative sense (for these functions at least), theamount of epistasis can be inferred from the relative magnitudes of the SS terms, i.e. theSS values as a fraction of the total SS. In case f1, the Anova table shows no epistasis atall, as would be expected, while f3 appears to be much less epistatic than f2. The case off4 (the deceptive function) is interesting: the relative magnitude of interactions SS is muchgreater than in the case of f2 (the delta function)|that is, it is worse to have misleadinginformation than to have no information at all. (We note here that Davidor [1] interpretsthe cases of f2 and f4 di�erently|arguing from the actual numerical values of his `epistasis
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Table 3: Anova results for Davidor's functionsf1 f2 f3 f4Source df SS df SS df SS df SSMain e�ects 3 42.00 3 294.00 3 133.00 3 5.502-way interactions 3 0.00 3 294.00 3 73.50 3 44.003-way interactions 1 0.00 1 98.00 1 24.50 1 24.50Total 7 42.00 7 686.00 7 231.00 7 74.00variances' that the deceptive function is less epistatic than f2. However, this would implythat epistasis is dependent on the measurement scale of the function, whereas it is clearthat this should not inuence the performance of a GA. We believe therefore that lookingat the relative magnitudes in the Anova table is more informative. Whether we can then goon to infer that this indicator of epistasis necessarily means that the problem is hard for aGA to solve is of course a separate, although very important, issue|one to which we hopeto return in a future paper.)4 THE INFLUENCE OF CODINGExperimental design also helps to throw some light on the often-noticed inuence of theadopted coding on the ease or di�culty of solving a given problem using GAs. We nowconsider 2 cases that have attracted attention in the GA literature: the inuence of Graycoding, and the e�ect of using a binary rather than a q-ary alphabet (q > 2).4.1 Gray codingAnother of Davidor's functions is a Gray-coded version of his function f1. The case for Graycoding has been put persuasively by Caruana and Scha�er [16], but Davidor's example in[2] shows that it may not necessarily be helpful.Consider the two representations of a 3-bit problem as tabulated below:Table 4: Binary and Gray code versions of a 3-bit problemBinary representation Fitness value Gray representation0 0 0 v1 0 0 00 0 1 v2 0 0 10 1 0 v3 0 1 10 1 1 v4 0 1 01 0 0 v5 1 1 01 0 1 v6 1 1 11 1 0 v7 1 0 11 1 1 v8 1 0 0A useful experimental design concept here is that of a contrast, usually denoted by uppercase Roman letters. For example, the contrastA = �1 � �0
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(where �p is as previously de�ned), expresses the average �tness value when allele 1 isinstantiated at gene 1, compared to the instantiation of allele 0. In terms of the vector of�tness values v in binary representation from the table above,A = 14(�1;�1;�1;�1; 1; 1; 1;1)vB = 14(�1;�1; 1; 1;�1;�1;1;1)vC = 14(�1; 1;�1; 1;�1; 1;�1;1)v:Similarly, we can de�ne contrasts relating to the interaction e�ects, so thatAB = 14(1; 1;�1;�1;�1;�1; 1; 1)vexpresses the average �tness value for cases where the instantiated alleles at genes 1 and2 are the same, compared to those where they are di�erent. The other contrasts are asfollows: AC = 14(1;�1; 1;�1;�1; 1;�1;1)vBC = 14(1;�1;�1; 1; 1;�1;�1; 1)vABC = 14(�1; 1; 1;�1; 1;�1;�1;1)v:The contrast ABC can be regarded as the di�erence between AB with allele 1 instantiatedat gene 3 and AB with allele 0 at gene 3. (Alternatively ABC could be interpreted interms of AC or BC.) These 7 contrasts are each associated with 1 degree of freedom, andcorrespond to the information presented in Table 2; they are orthogonal, and can thus bedetermined simultaneously from the observed �tness values. In the case of Davidor's f1, forexample, they are A = 4; B = 2; C = 1 and all others 0.Now consider the Gray-coded version of the same situation, where we denote the contrastsby the letters X,Y,Z. While it is clear thatX � A;the other contrasts are all di�erent: for example,Y = 14(�1;�1; 1; 1; 1;1;�1;�1)v;so that Y � �AB:Similar results can be found for the other contrasts, which can be summarised as follows:A � X;B � �XY;C � XYZ;AB � �Y;AC � YZ;BC � �Z;ABC � �XZ:Thus, analysing Davidor's linear function f1 using the above Gray code representation wouldresult in non-zero contrasts for the interactions XY and XYZ, and a conclusion from theAnova table that the function was epistatic. Of course, it would not be di�cult to de�nea function for which a Gray code had the opposite e�ect|the 3-bit function displayed inTable 5 below is epistatic, but it is not di�cult to show that using the Gray code of Table4 would make the problem linear.
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Table 5: Another 3-bit problemString (binary code) Fitness0 0 0 80 0 1 50 1 0 10 1 1 41 0 0 51 0 1 21 1 0 61 1 1 9We also note here a connection with the work of Liepins and Vose [6], who show that thereis always a transformation of the coding of a `fully deceptive' problem which transformsit into a `fully easy' one (for a de�nition of these terms see [6]). In this sense, a Graycode transformation of a binary code is simply a special case of their more general result.In terms of experimental design, what they are saying is that there is always a way ofconverting interactions into main e�ects by a suitable transformation. The problem inpractice, of course, is to know what that transformation is!4.2 Binary versus q-ary codingThe issue of whether binary coding is to be preferred to using a larger q-ary alphabet(q > 2) has been widely debated, and it would be fair to say that it has not been resolved.Holland [14], and following him Goldberg [15], stressed the advantage of a binary alphabet,in that it allows the sampling of the maximum number of schemata per individual in thepopulation. More recently, Antonisse has put forward a counter-argument in [17] by re-de�ning the concept of a schema, while Radcli�e's work [11] makes a very similar point. Onthe other hand, Reeves [18] has recently argued that there are certain theoretical advantagesin using binary-coding in cases where GAs need to be limited to a small number of functionevaluations. An ED approach throws a further interesting sidelight on the question.Suppose we have a problem with 2 genes J and K, each of which has 4 alleles denoted byf0,1,2,3g. Then, de�ning the �tness vector asv = (v00; v10; . . . ; v33)T ;we can determine 3 orthogonal contrasts for each geneJ1 = (�1;�1; 1; 1;�1;�1; 1; 1;�1;�1;1;1;�1;�1;1; 1)v;J2 = (1;�1;�1; 1; 1;�1;�1; 1;1;�1;�1;1;1;�1;�1; 1)v;J3 = (�1; 1;�1; 1;�1; 1;�1; 1;�1; 1;�1;1;�1; 1;�1; 1)v;and K1 = (�1;�1;�1;�1;�1;�1;�1;�1;1;1; 1; 1;1;1; 1; 1)v;K2 = (1; 1; 1; 1;�1;�1;�1;�1;�1;�1;�1;�1;1;1; 1; 1)v:K3 = (�1;�1;�1;�1; 1; 1; 1; 1;�1;�1;�1;�1;1;1; 1; 1)v;
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The interpretation of these contrasts is a little more complicated than in the binary case, butit can easily be seen that J1, for example, expresses the contrast between having alleles at`high' levels at gene 1 rather then at `low' levels. We could thus interpret J1 (and, naturally,K1) as indicating a `linear' component, while the pattern of positive and negative signs forJ2;K2 and J3;K3 suggest `quadratic' and `cubic' components respectively.Suppose for a particular v the main e�ects give the only non-zero contrasts using this coding.For example, suppose the �tness is de�ned asvjk = 1 + 2j + k for j; k 2 f0; 1; 2; 3g:Consider what happens if the 4-ary code fjkg is replaced by its binary equivalent fpqrsg =(0000; 0100; 1000; . . . ; 1111). There will now be 4 genes P,Q,R,S leading to the followingcontrasts P = (�1;�1; 1; 1;�1;�1; 1;1;�1;�1;1; 1;�1;�1; 1;1)v;Q = (�1; 1;�1; 1;�1; 1;�1;1;�1;1;�1; 1;�1;1;�1;1)v;R = (�1;�1;�1;�1;�1;�1;�1;�1;1;1; 1; 1;1;1;1; 1)v;S = (�1;�1;�1;�1; 1; 1; 1; 1;�1;�1;�1;�1;1;1; 1; 1)v:These are seen to be identical to J1; J3;K1;K3 respectively, but what has happened to J2and K2? It is in fact easily checked that the information contained in J2 and K2 will nowbe found in the contrasts PQ and RS, so that an Anova table based on a binary coding ofsuch a function would again lead to the conclusion that the problem is epistatic.In contrast to the binary versus Gray question, it would seem more doubtful that adoptionof a binary coding could make an epistatic q-ary problem less so. Thus, to the extent thatit is harder for a GA to solve an epistatic problem than a simple linear one (and we notethat in the latter case we would not actually need to use a GA at all), we might argue thatbinary coding of the function is likely to increase epistasis, so that any supposed advantagefrom binary coding could be negated.5 WALSH TRANSFORMS AND DECEPTIONThus far we have seen that Davidor's linear decomposition of a bit-encoded function leadsto a set of coe�cients which are equivalent to the standard linear model of experimentaldesign. Another linear decomposition which is often used in the analysis of GAs is theWalsh transform.Bethke [19] introduced the idea of using Walsh transforms to analyse the process of a GAin the case of binary-coded strings. The ideas used were given greater impetus and widercurrency in papers by Goldberg [3, 4]. More recently, Mason [5] has de�ned the concept of apartition coe�cient as a generalization of the Walsh coe�cients for non-binary strings. Heproceeds to derive some theoretical results from this de�nition, which makes it clear thatthese coe�cients are just the `e�ects' as de�ned in the ED context, and his theoretical resultsare simply a derivation of the side constraints as outlined above. It further follows from thisthat the Walsh transform decomposition is also equivalent to that of experimental design.However, it is instructive to examine the relationship between Walsh transform analysis andexperimental design rather more closely. We shall focus particularly on Goldberg's famous3-bit deceptive problem, as in Table 1.
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In Walsh transform analysis, the bits are usually numbered from right to left, so in thissection only we shall adopt the same convention. The Walsh monomials are de�ned on thestring positions fyig coded for convenience as +1 or �1 rather than the usual 0 or 1: j(y) = �li=1(yi)jiwhere ji is the ith bit (counting from the right) in the binary representation of the numberj. The Walsh function representation of the �tness v isv(y) = 2l�1Xj=0 wj j(y)where y encodes the bit positions as above. There are clearly the same number of indepen-dent coe�cients in the ED decomposition as there are Walsh coe�cients, so it is natural toask how they are related.The relationship is clearly illustrated in a 3-bit example. The Walsh coe�cients can befound from the �tness averages for di�erent schemata:v��� = w0v��0 = w0 +w1v��1 = w0 �w1 etcwhereas from the experimental design viewpoint, we havev��� = �v��0 = �+ �0v��1 = �+ �1 etc.If we write out the full set of equations, we �nd that� = w0�i = (�1)iw1�j = (�1)jw2(��)ij = (�1)i+jw3k = (�1)kw4(�)ik = (�1)i+kw5(�)jk = (�1)j+kw6(��)ijk = (�1)i+j+kw7The `mapping' from the Walsh coe�cient numbers to the appropriate `e�ect' is given bywriting the e�ects in what is known in experimental design as standard order : in thiscase f�; �; �; ��; ; �; �; ��g. The general pattern is fairly obvious|on adding anotherfactor the next set of e�ects is obtained by `combining' the new factor with the e�ectsalready listed, in the same order. Thus in the case of a 4-bit problem, for example, the next8 e�ects in standard order will bef�; ��; ��; ���; �; ��; ��; ���g:It is also fairly obvious that this order is a consequence of the de�nition of the Walshmonomials.Thus in general, to convert from the Walsh representation to the ED coe�cients, we �rstidentify the appropriate coe�cient as above, and its associated indices, and then multiplyby (�1)P indices.
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5.1 Implications for deceptionIn his �rst paper [3], Goldberg uses Walsh coe�cients to design the fully deceptive 3-bitfunction of Table 1. The requirement for this function is that while 111 is the optimal point,any schema containing 1s should be less �t than the corresponding schema which contains0s: for example, v��1 < v��0. We now consider this function from the ED viewpoint.For example, the inequality v��1 < v��0 can be decomposed as follows (remembering that thenumbering is from right to left, so that the speci�ed gene here corresponds to �). v��1 < v��0implies that v001 + v011 + v101 + v111 < v000 + v010 + v100 + v110:On substituting the ED model given in Equation 1, the left-hand-side of this inequality is4�+ 4�1 + 2[�0 + �1 + 0 + 1] + 2[(��)10 + (��)11] + 2[(�)10 + (�)11] +(�)00 + (�)01 + (�)10 + (�)11 + (��)100 + (��)110 + (��)101 + (��)111while the right-hand-side is4�+ 4�0 + 2(�0 + �1 + 0 + 1) + 2[(��)00 + (��)01] + 2[(�)00 + (�)01] +(�)00 + (�)01 + (�)10 + (�)11 + (��)000 + (��)010 + (��)001 + (��)011:Many of these terms cancel, while because of the side constraints terms such as (��)10 +(��)11 vanish, and we are simply left with�1 < �0:The other order-1 schemata inequalities similarly reduce to�1 < �0; 1 < 0which, again because of the side constraints, simply mean that the e�ects with the `1'subscripts are the negative ones. Thus we could write�1 = �a; �0 = a; etcwhere it is to be understood that a > 0. It can also be shown that the order-2 inequalitieslead to relationships of the form�1 + (��)10 < �0 + (��)00�1 + (��)01 < �0 + (��)00�1 + �1 + (��)11 < �0 + �0 + (��)00The �rst two constraints reduce toa+ (ab) > 0b+ (ab) > 0 etcwhere, because of the side constraints,(��)00 = (��)11 = (ab)(��)01 = (��)10 = �(ab); etc.The third constraint is redundant, as the interaction terms cancel.
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Finally, we have the fact that v111 is the optimum, leading to 7 inequalities generated byv111 > v011 etc. After some algebra, these reduce to the following:(ab) + (ac) > b+ c(ab) + (ac) > a+ (abc)(ab) + (bc) > a+ c(ab) + (bc) > b+ (abc)(ac) + (bc) > a+ b(ac) + (bc) > c+ (abc)(abc) < �(a + b+ c)The last inequality puts an upper bound on the third-order interaction, (abc), and also forcesit to be negative. The other conditions occur in pairs, each of them having the followinginterpretations:� for each factor, the sum of the interactions with the other two factors must exceed thesum of the other two main e�ects;� for each factor, the sum of the interactions with the other two factors and the third-order interaction must exceed that main e�ect (where we have used the fact that (abc)is negative).There are two comments here: �rstly it is interesting that deception corresponds to `large'interaction terms. There is a possible link here with the results of Liepins and Vose [6]who, although using yet another decomposition, found similar conditions for distinguishingbetween levels of epistasis. (It is obviously possible, although perhaps less interesting,to relate their polynomial decomposition to experimental design. The conditions on thecoe�cients in their decomposition do not have as `nice' an interpretation as the above.)The second comment relates to the relative transparency of this way of expressing the de-ception conditions. We would argue that they are rather more meaningful than when theyare expressed by the rather anonymous Walsh coe�cients. In fact, this analysis revealed anerror in the speci�cation given in Goldberg [3]|probably due to a typographical mistakewhich would be much harder to overlook using the ED formulation1. Remarkably, on com-paring the ED decomposition to the Liepins and Vose representation, it was clear that therewas also an error in one of the de�nitions in [6]!6 CROSSOVER NON-LINEARITY RATIOSEarlier, we referred to Mason's extension [5] of the Walsh transform decomposition to whathe calls partition coe�cients in the general (non-binary) case. These he denotes by symbolssuch as �(i � �), which in ED terms represents the e�ect of allele i at gene 1. That is, his�(i � �) is just the term we have called �i.In a more recent paper [21], Mason has taken this concept a stage further in an attemptto analyse the e�ect of traditional crossover and how this operator interacts with a givenfunction. This is an important question, as it marks a step beyond the essentially static1Goldberg [20] has con�rmed that two inequalities which should read w3 + w5 > w1 + w7 andw3 + w6 > w2 + w7 have had their right-hand sides transposed in [3].
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analysis of epistasis to a consideration of dynamic aspects. In Mason's terminology, if twostrings ab and pq are crossed to produce aq and pb, where a; b; p; q may all represent sub-strings of several bits, we can form a crossover non-linearity ratio = j�(ab)jsign[�(a�)�(�b)][j�(a�)j+ j�(�b)j];where the �(a�) are now `pseudo partition coe�cients'. The purpose of this is to attemptto identify cases where crossover is likely to fail to combine building blocks usefully.Unfortunately, he makes the assumptions that �(a�) = ��(p�); �(�b) = ��(�q) etc. Theserelations are perfectly valid in the case where a; b; p; q represent single bits, but it does notfollow when they represent several bits. We can see this quite easily from the ED viewpoint,if we take the simplest non-trivial case of 3-bit binary strings, where a; p represent the �rst2 bits, and b; q the last one.Using the ED decomposition of Equation 1, we can identify Mason's pseudo partition coef-�cients as follows (in an obvious notation):�(a�) = �ia + �ja + (��)iaja�(�b) = kb�(ab) = (�)iakb + (�)jakb + (��)iajakbAssuming that a; p are not identical, it is clear we have two cases to consider. If both ia 6= ipand ja 6= jp then �(a�) + �(p�) = 2(��)iaja 6= 0because of the side constraints. Similarly, if just one of ia = ip or ja = jp is true, then wehave �(a�) + �(p�) = 2�ia 6= 0 or �(a�) + �(p�) = 2�ja 6= 0so that in neither case does the single-bit result follow through. There must consequentlybe some doubt as to the usefulness of  : a value of near zero is interpreted in [21] asindicating low epistasis and thus a situation where traditional one-point crossover is likelyto be e�ective. However, it is clear from the above decomposition of his �(ab) that a zerovalue of the  ratio could result from an appropriate combination of interaction terms ofdi�erent orders.7 CONCLUSIONSWe have shown that there are considerable and interesting links between genetic algorithmsand traditional experimental design methods, and that ED can help to illuminate the stillinadequately understood nature of epistasis in GAs. These links have been adumbratedand explored in the context of three applications in the GA literature: Davidor's `epista-sis variance'; the Walsh transform analysis of Goldberg; and Mason's attempt to extendthe latter to investigate the interaction between the characteristics of a function and thecrossover operator. In each case, the ED perspective is helpful; it provides another way offormulating and understanding what the existing methodology is doing|a way which wewould argue is more transparent and intuitive.However, this approach has in common with existing methodology that it begs a very largequestion: in practice we have no knowledge of the Universe. This means that measures
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